

Thermochimica Acta 352-353 (2000) 61-67

thermochimica acta

www.elsevier.com/locate/tca

Comparative study on the thermal phase transitions of rubidium and cesium formates

Yoshio Masuda^{a,*}, Wataru Morita^b, Xiaou Wang^b, Yasuhiko Yukawa^a

^aDepartment of Environmental Science, Faculty of Science, Niigata University, Niigata 950-2181, Japan ^bGraduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan

Received 2 June 1999; received in revised form 30 July 1999; accepted 25 August 1999

Abstract

The thermal phase transitions of HCO₂Cs and HCO₂Rb were found to be reversible, first-order transitions. Through the transitions, the orthorhombic phase(*Pbcm*) of HCO₂Cs transformed to the cubic phase (*P3m3*), and the orthorhombic phase (*Pca2*1) of HCO₂Rb transformed to the monoclinic phase (*P21/m*).

From the viewpoint of the orientation of formate ion, the thermal phase transitions of HCO₂Rb and HCO₂Cs could be classified as order–order and order–disorder transitions, respectively. The ΔH_{tr} and ΔS_{tr} values for the transition of HCO₂Cs were lager than those of HCO₂Rb, which was predictable from the difference of the orientational changes of formate ions in both the transitions.

When compared with the space around the formate ion for the phase after transitions of both the formates, the space for HCO_2Cs is larger than that for HCO_2Rb , and the formate ion of HCO_2Cs could move more easily than that of HCO_2Rb . This finding appears to reflect the difference of ionic radii of Rb^+ and Cs^+ ions. (© 2000 Elsevier Science B.V. All rights reserved.

Keywords: Thermal phase transition; Rubidium and Cesium formates

1. Introduction

The thermal decomposition of alkali-metal formates has been studied by Masuda and Shishido [1–3]. These formates decomposed through two stages. In the first stage, the formates decomposed to form the respective carbonates and oxalates. The oxalates formed in the first stage decomposed to carbonate and carbon monoxide in the second stage. However, only a few papers have been reported on the thermal phase transitions of these formates [4–8]. In the course of the thermal analysis of alkali metal formates, we found that they transformed before melting [6–8]. In the present paper, the thermal phase transitions of HCO_2Cs and HCO_2Rb were studied by means of X-ray diffraction method and thermal analysis, and the difference of the transitions was discussed from the viewpoint of the orientational change of formate ion through the transition in connection with the difference of the ionic radii of Cs^+ and Rb^+ ions.

2. Experimental

2.1. Thermal analysis

TG and DTA were simultaneously recorded on a Rigaku Thermoflex TG8101D in vacuo (ca 100 Pa). About 10 mg of sample was weighed into a platinum

^{*} Corresponding author.

^{0040-6031/00/\$ –} see front matter \odot 2000 Elsevier Science B.V. All rights reserved. PII: \$0040-6031(99)00438-4\$

crucible, and α -alumina was used as a reference material. The enthalpy changes for melting ($\Delta H_{\rm fus}$) and phase transition ($\Delta H_{\rm tr}$) were obtained from DSC curves recorded on a Shinku-Riko DSC-1500 M5. About 10 mg of the sample was placed in an aluminum crucible, and α -alumina was used as a reference material. After the sample was set, the sample chamber was purged with dry nitrogen gas, and the measurement was carried out at a heating rate of 5 K min⁻¹ under a closed system. The instrument was calibrated with enthalpy changes for the phase transitions of potassium nitrate ($T_{\rm tr}$ =127.8°C, $\Delta H_{\rm tr}$ =5.4 kJ mol⁻¹) and potassium perchlorate ($T_{\rm tr}$ =299.6°C, $\Delta H_{\rm tr}$ =13.8 kJ mol⁻¹) [9].

2.2. X-ray diffraction

The crystal structure of the phase before transition of HCO₂Rb was determined by the single-crystal method [8]. All measurement were performed on a Rigaku AFC5R diffractometer with graphite monochromated MoK α radiation (λ =0.7107 Å). The data were collected using the ω -2 θ scan technique to a maximum 2 θ value of 70.0°. A total of 591 reflections was collected, and 323 of the reflections having intensities three times larger than the standard conditions were used for the structural analysis. The observed intensities were corrected for the Lorentz polarization and absorption effects.

The crystal structures of the phase after transition of HCO₂Rb, and the phases before, and after, the transition of HCO₂Cs were determined using the Rietveld method to analyze the powder X-ray diffraction data [7,10,11]. X-ray powder diffraction data were collected using a Rigaku Geigerflex RAD-3R diffract-ometer equipped with a high-temperature sample holder. The sample was set on a platinum plate in a grove pack filled with dry nitrogen gas. The data were collected in the 2θ range from 20 to 70° with a stepscan width of 0.02° and fixed time (10 s) counting procedure in vacuo (ca 10^{-1} Pa). CuK α radiation (λ =1.5418 Å) was monochromatized at the counter side using a graphite monochrometer.

3. Results and discussion

The DTA curves of HCO_2Cs and HCO_2Rb are shown in Fig. 1. Small endothermic peaks without

Fig. 1. DTA curves of HCO_2Rb and HCO_2Cs. Heating at 5 K min $^{-1}$ and cooling spontaneously.

any weight change were observed at 36 and 90°C on the DTA curves of HCO₂Cs and HCO₂Rb, respectively. The difference between the powder X-ray diffraction profiles measured before, and after, these endothermic peaks showed that the peaks corresponded to phase transitions. When the samples were heated above the temperatures of endothermic peaks and cooled gradually, exthothermic peaks were observed just below the temperatures of the endothermic peaks (Fig. 1). These results show that both the transitions can be classified as reversible, first-order transitions. The endothermic and exothermic peaks of HCO₂Cs had discernible shoulders; however, no intermediate phases were detectable by careful diffraction analyses.

The values of enthalpy $(\Delta H_{\rm tr})$ and entropy $(\Delta S_{\rm tr})$ changes for the phase transitions and the fusions $(\Delta H_{\rm fus} \text{ and } \Delta S_{\rm fus})$ were given in Table 1 [3,14]. It is worth noting that $\Delta S_{\rm tr}$ of HCO₂Cs is larger than $\Delta S_{\rm fus}$, and that the $\Delta H_{\rm tr}$ and $\Delta S_{\rm tr}$ of HCO₂Cs are larger than those of HCO₂Rb. Therefore, a violent structural change, such as the melting, seems to take place through the phase transition of HCO₂Cs.

The lattice parameters of the phases before, and after, transitions were also shown in Table 2. The

		<i>T</i> (°C)	$\Delta H \ (\text{kJ mol}^{-1})$	$\Delta S \; (\mathbf{J} \; \mathbf{K}^{-1} \; \mathrm{mol}^{-1})$
HCO ₂ Rb	phase transition melting	90 173	0.42±0.02 12.5±0.5	$1.16{\pm}0.05$ 28.0 ${\pm}1.1$
HCO ₂	Cs phase transition melting	36 263	6.87±0.28 8.11±0.33	22.2±0.90 15.1±0.6

Table 1 The values of enthalpy and entropy changes for the transitions of rubidium and cesium formates

Table 2

Lattice parameters before, and after, phase transitions of HCO2Cs and HCO2Rb

	Before transition		After transition	
HCO ₂ Cs	crystal system orthorhombic (<i>Pbcm</i>)	a=4.785(1) Å b=9.553(2) Å c=15.927(2) Å z=8	crystal system cubic (P3m3)	a=4.500(2) Å z=1
HCO ₂ Rb	crystal system orthorhombic (<i>Pca</i> 21)	a=9.229(1) Å b=4.630(2) Å c=7.408(2) Å z=4	crystal system monoclinic (P21/m)	a=4.6522(4) Å b=4.6528(7) Å c=7.5170(6) Å $\gamma=97.610(6)$ z=2

orthorhombic phase (Pca21) of HCO₂Rb transformed to the monoclinic phase (P21/m) through phase transition.

The crystal structures of both the phases before, and after, transition of HCO_2Rb are shown in Figs. 2 and 3, respectively. Although the position of the hydrogen atom could not be determined, the atom was placed in the position expected from the form of formate ion [12,13]. In both the phases, the rubidium ions situated

on the *x*-*y* planes at *z*=0 and 0.5, and the formate ions also situated on the *x*-*y* plane at *z*=0.25 and 0.75. Fig. 4 shows the three-dimensional frameworks connecting the eight Rb^+ ions for both the phases before, and after, transition. Because a drastic change was not observed for the dimensions of the frameworks of the phases before, and after, transition, the relative position of Rb^+ ions appears to be scarcely changed through the transition. Therefore, the structural

Fig. 2. Crystal structure of phase before transition of HCO₂Rb.

Fig. 3. Crystal structure of phase after transition of HCO₂Rb.

Fig. 4. Framework of Rb^+ ions of HCO_2Rb . (A) before, and (B) after transition.

change must be due to the orientation of the formate ion in the respective phases. The formate ions, however, moved slightly on the *x*-*y* planes through the transition as shown in Fig. 5, and the small values of $\Delta H_{\rm tr}$ and $\Delta S_{\rm tr}$ seem to correspond to the slight change of the orientation of the formate ions.

In the phase transition of HCO₂Cs, the orthorhombic phase (Pbcm) transformed to the cubic phase (Pm3m) (Table 2). The crystal structures of the phases before, and after, the transition are shown in Figs. 6 and 7, respectively. Fig. 8 shows the three-dimensional frameworks connecting the eight Cs⁺ ions for both the phases before, and after, transition. As well as the case of HCO₂Rb, little difference was noted in volumes of both the frame-works. The most remarkable change must be due to the orientation of the formate ion in both the phases. The formate ion occupies a specific position in the structure before the transition and the orientational freedom is thought to be unity. Whereas, in the phase after transition, the configuration of the formate ion is not determined, the orientational freedom is estimated to be 12, as shown in Fig. 9. The value of entropy change calculated on the basis of the

Fig. 5. Stacking sequences of layers along c-axis of HCO₂Rb. (A) before, and (B) after transition.

Boltzmann equation

$$\Delta S_{\rm tr} = R \ln \left(\frac{n_{\rm after}}{n_{\rm before}} \right)$$

where *R* is the Universal Gas Constant, and n_{after} and n_{before} the orientational freedom of formate ion for the phase after, and before, transition, respectively. The calculated ΔS_{tr} in accordance with this equation,

Fig. 6. Crystal structure of phase before transition of HCO₂Cs.

Fig. 7. Crystal structure of phase after transition of HCO₂Cs.

 $20.7 \text{ J K}^{-1} \text{ mol}^{-1}$, is in fair agreement with the observed one, $22.2 \pm 0.9 \text{ J K}^{-1} \text{ mol}^{-1}$. Therefore, the phase transition of HCO₂Cs can be classified as an order–disorder transition from the viewpoint of the orientation of formate ion. On the other hand, the formate ion of HCO₂Rb occupy specific positions in both the phases before, and after, transitions, so the transition is classified as an order–order transition.

It is reasonable that the values of ΔH_{tr} and ΔS_{tr} for the order–order transition of HCO₂Rb are much smal-

Fig. 8. Framework of Rb^+ ions of HCO_2Cs . (A) before, and (B) after transition.

ler than those for the order-disorder transition of HCO_2Cs , because the relative positions of Rb^+ and Cs⁺ ions were scarcely changed in both the transitions and the large portions of the $\Delta H_{\rm tr}$ and $\Delta S_{\rm tr}$ are ascribable to the orientational change of the formate ion. Why does the difference between the phase transitions of HCO₂Cs and HCO₂Rb arise? One of the reasons could be discussed as follows on the basis of the difference of the ionic radii of Rb⁺ and Cs⁺ ions. Fig. 5 shows the projections of the crystal structure before, and after, the transitions of HCO₂Rb. In the phase before transition, the carbon atom of formate ion is situated approximately at the center of the threedimensional lattice consisting of Rb⁺ ions. After the transition, the carbon atom moves to the plane formed by the Rb⁺ ions, and then the surrounding space of the formate ion seems to become more narrow than that of the phase before transition (Figs. 10 and 11). In the phase before transition in case of HCO₂Cs, the carbon atom of formate ion is situated on the plane parallel to the planes formed by Cs⁺ ions. After the transition, the carbon atom moves to the center of the three-dimensional lattice consisting of the Cs⁺ ions (Figs. 10 and 11).

Fig. 11 shows a comparison of the spaces around the carbon atoms of formate ions for the phases after transitions of both the formates. The space for HCO_2Cs is larger than that for HCO_2Rb , and then the formate ion in the phase of HCO_2Cs seems to be able to move more easily than that of HCO_2Rb . The ionic radius of Cs^+ ion, 1.81 Å, is larger than that of Rb^+ ion, 1.66 Å [14], and the difference of the ionic radii of both the ions appears to affect the dimensions

Fig. 9. Orientational freedom of formate ion for the phase after transition of HCO₂Cs.

of the framework formed by the respective metal ions. The dimension of the framework formed by Cs^+ ions is larger than that formed by Rb^+ ions. The critical condition, whether a formate ion can move easily in the phase after transition or not, seems to depend on the dimension of the framework formed by metal ions. Therefore, the condition of the order–order or the order–disorder transitions appears to result from the mobility of the formate ion in the phase after transitions.

4. Conclusions

The thermal phase transitions of HCO_2Cs and HCO_2Rb were found to be a reversible and first-order transition by means of thermal analysis and X-ray diffraction method. Through the transitions, the orthorhombic phase(*Pbcm*) of HCO_2Cs transformed to the cubic phase (*P3m3*), and the orthorhombic phase (*Pca21*) of HCO_2Rb transformed to the monoclinic phase (*P21/m*).

Fig. 10. Projections of the crystal structures of HCO_2Rb and HCO_2Cs . (A) before transition of HCO_2Rb ; (B) after transition of HCO_2Rb ; (C) before transition of HCO_2Cs ; and (D) after transition of HCO_2Cs .

Fig. 11. Spaces around formate ion of phase after transition. (A) HCO₂Rb, and (B): HCO₂Cs.

In both the transitions, the relative positions of metallic ions hardly changed and most of the structural changes could be attributable to the orientational changes of formate ions. The transitions of HCO₂Rb and HCO₂Cs could be classified as order–order and order–disorder transitions, respectively, from the viewpoint of the orientation of formate ion. The ΔH_{tr} and ΔS_{tr} values for the transition of HCO₂Cs were larger than those of HCO₂Rb, which was predictable

from the difference of the orientational changes of formate ions in both the transitions.

On comparing the space around the formate ion for the phase after transition of both the formates, the space for HCO₂Cs is larger than that for HCO₂Rb, and the formate ion of HCO₂Cs could move more easily than that of HCO 2Rb. This finding appears to reflect the difference of ionic radii of Rb⁺ and Cs⁺ ions.

References

- [1] S. Shishido, Y. Masuda, Nippon Kagaku Zasshi 92 (1971) 309.
- [2] S. Shishido, Y. Masuda, Nippon Kagaku Kaishi (1973) 185.
- [3] S. Shishido, Y. Masuda, Nippon Kagaku Kaishi (1976) 66.
- [4] P. Ferloni, M. Sansei, P. Franzosini, Z. Naturforsh. 30a (1975) 1147.
- [5] M. Braghetti, G. Bercheisie, Ann. Meeting, Chim. Inorg. (1969) 101.
- [6] Y. Masuda, K. Hashimoto, Y. Ito, Thermochim. Acta. 163 (1990) 171.
- [7] Y. Masuda, A. Yahata, H. Ogawa, Inorg. Chem. 34 (1995) 3130.
- [8] Y. Masuda, W. Morita, A. Yahata, Y. Yukawa, Thermochim. Acta 318 (1998) 39.
- [9] Kagaku Binran Kisohen II (Handbook of Chemistry), 3rd Edition, The Chemical Society of Japan (Edited), Maruzen, Tokyo 1984, 267 pp.
- [10] H.M. Rietveld, J. Appl. Crystallogr. 2 (1969) 65.
- [11] F. Izumi, H. Asano, H. Murata, N. Watanabe, J. Appl. Crystallogr. 20 (1987) 411.
- [12] J.W. Bats, H. Fuess, Acta Cryst. B36 (1980) 1940.
- [13] P.L. Markila, S.J. Retting, J. Trotter, Acta Cryst. B31 (1975) 2927.
- [14] Kagaku Binran Kisohen II (Handbook of chemistry), 4th Edition, The Chemical Society of Japan (Edited), Maruzen, Tokyo 1993, 725 pp.